网站地图 | RSS订阅 欢迎光临 丹阳市东方合金有限公司官网

咨询热线:0511-86688876

热门关键词: GH5605,GH3128,GH3044

新闻中心

当前位置:首页 > 新闻信息 > 公司新闻 > 镍的冶炼工艺

[newsnname]

来源 : www.alloy-east.com   发布时间 : 2021-05-19

镍的冶炼工艺
   镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和冶炼工艺完全不同:根据硫化铜镍矿矿石级别选用不同选石方法,再进行冶炼;氧化镍矿的冶炼富集方法,可分为火法和湿法两大类。具体选矿加工内容下面将详细介绍。
   硫化铜镍
   选石方法
   硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿石时,常采用浮选硫化铜矿物的捕收剂和起泡剂。确定浮选流程的一个基本原则是,宁可使铜进入镍精矿,而尽可能避免镍进入铜精矿。因为铜精矿中的镍在冶炼过程中损失大,而镍精矿中的铜可以得到较完全的回收。铜镍矿石浮选具有下列四种基本流程。
   1)直接用优先浮选或部分优先浮选流程:当矿石中含铜比含镍高得多时,可采用这种流程,把铜选成单独精矿。该流程的优点是,可直接获得含镍较低的铜精矿。
   2)混合浮选流程:用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍。
   3)混合—优选浮选流程:从矿石中混合浮选铜镍,再从混合精矿中分选出含低镍的铜精矿和含铜的镍精矿。该镍精矿经冶炼后,获得高冰镍,对高冰镍再进行浮选分离。
   4)混合—优先浮选并从混合浮选尾矿中再回收部分镍:当矿石中各种镍矿物的可浮性有很大差异时,铜镍混合浮选后,再从其尾矿中进一步回收可浮性差的含镍矿物。
   硫化镍矿冶炼
   工艺流程选择根据原料类型、成分和对产品的要求而定。硫化矿大部分采用造锍熔炼,即将各种硫化镍矿采用不同的火法冶金工艺炼成低镍锍,再将低镍锍用转炉吹炼成高镍锍,即硫化镍和硫化铜的合金。高镍锍再经镍精炼厂的不同精炼方法生产出不同的镍产品。
   火法冶炼
   硫化镍矿也可采用湿法冶炼,但只有个别工厂采用。
   氧化镍矿
   氧化镍矿多采用破碎、筛分等工序预先除去风化程度弱、含镍低的大块基岩。由于氧化镍矿中的镍常以类质同象分散在脉石矿物中,且粒度很细,因此不能用机械选矿方法予以富集,只能直接冶炼。
   氧化镍矿冶炼简介
   氧化镍矿的冶炼富集方法,可分为火法和湿法两大类。前者又可分为造硫熔炼、镍铁法和粒铁法;后者又有还原焙烧-常压氨浸法、高压酸浸法等。
   氧化镍矿在我国不居重要地位,只有云南墨江金厂、元江安定地区有一定的储量。经设计,该矿采用造硫熔炼(还原焙烧)较氨浸法好。但总的来看,该矿矿石品位低,镁高(MgO 15%~30%)难熔,燃料耗量大,运输有困难,当前难以提上建设日程。
   由于地球上硫化镍矿资源量较少,因此氧化镍矿(红土镍矿)提取镍金属逐步成为世界提取镍金属的主流。红土镍矿的主要提取工艺主要有两种:湿法冶炼和火法冶炼。
   湿法冶炼
   湿法冶炼的冶炼工艺又可分为氨浸工艺、高压酸浸工艺、还原焙烧-酸浸工艺和硫酸化焙烧-水浸工艺。其中氨浸工艺只适合处理表层的红土矿,不适合处理含铜和含钴高的氧化镍矿。高压酸浸工艺适合于处理低镁(铝)高铁类型的红土镍矿-褐铁矿型(70%的红土矿都属于褐铁矿型)。
   湿法冶炼优点:能耗低,污染少,质优,工艺发展历史悠久,起源于20世纪70年代,无论是常压还是加压酸浸,目前技术都比较成熟,国内外均有多条成熟的生产线,随着近年来环保力度的加大和一些原镍出口国出口限制,我国逐渐减少了直接冶炼红土镍矿,转而冶炼经过初加工的镍中间产品来生产镍铁和电解镍,由此促进了镍湿法冶炼中间产品的进口。湿法冶炼的发展优势更加明显。它的不足则是工艺投资大,周期长,工艺复杂,成本较高而售价较高,市场竞争能力弱,但这种状态一时尚难以改变。
   火法冶炼
   火法冶炼的冶炼工艺可分为还原熔炼镍铁工艺和还原硫化熔炼镍锍工艺两种。火法冶炼适合处理硅镁镍类型矿(即矿床下部硅、镁的含量比较高、铁含量较低、钴含量也较低的矿石)。其中用的最多的是还原熔炼镍铁工艺。
   火法冶炼根据还原熔炼设备又可分为电熔炉熔炼和鼓风炉熔炼两种,较大生产规模的工厂大都采用电炉熔炼,小厂则采用鼓风炉熔炼。电炉熔炼适合处理各种类型的氧化镍矿,依据原料的供应情况、矿石的贮量等决定,生产规模可大可小,对入炉炉料的粒度也没有严格的要求,粉料以及较大块料都可直接处理,但缺点是耗能太大。鼓风炉熔炼生产镍铁的有点是投资小,能耗较低,适合规模小、电力供应困难以及含镍较低的红土矿去,其缺点是对矿石适应性差,对镁含量有较严格的要求,另外不能处理粉矿,对入炉炉料也有严格的要求。
   总体来看,火法工艺火法工艺能耗高,金属综合回收效果差,成本与湿法冶炼成本相当,属于传统的处理方法。
   通过对湿法冶炼和火法冶炼的优点和不足分析可知,由于湿法工艺耗能少,污染少,质量优,两种工艺目前成本相当,湿法工艺的优越性和发展趋势逐渐凸显,那么湿法冶炼自然更受重视,对其技术的投入一定大于火法冶炼,随着湿法冶炼技术、设备的进步和规模的扩大,逐渐湿法工艺的成本将逐渐低于火法工艺。两种方法比较技术和经济上都占有优势,因此在未来几年新建的红土镍矿项目中,湿法冶炼比例会大于火法冶炼,湿法冶炼发展前景较为乐观。
   即便湿法冶炼有着很多优势,但目前来看,其冶炼技术也存在很多问题,如一次性设备投入,只适合处理含镁低的褐铁型矿石,且对矿石品位有要求,同液废料多,污染环境等等。这些难题一直限制着该工艺的发展,人们在完善加压酸浸技术的同时也在不断地开发新的红土镍矿湿法流程,如常压浸出,生物浸出等技术,近年来,这些新的流程备受关注,与加压酸浸工艺相比,他们具有以下优点:
   1、常压浸出、生物浸出技术能处理含镁比较高的红土镍矿,都适合处理低品位的矿石。
   2、常压浸出、生物浸出可以在常温常压的条件下进行,对设备要求低、工艺简单、操作方便,因而投资少,生产成本低。
   3、加压酸浸法固液废料多,污染环境。而新的流程如生物浸出不会产生SO2气体,产生的固液废弃物也能为环境所接受,十分环保。
   但是这些新流程还不成熟,还存在一些技术难题,如常压浸出中浸出液分离困难,生物浸出也存在有机酸不能循环的问题,且从目前的报道可知,常压和生物浸出技术处理红土镍矿时镍、钴的浸出率一般都低于加压酸浸。虽然存在的难题多,但相信通过技术不断的改进,终将会被解决,常压浸出和生物浸出一定会有很好的发展前景。
  镍的制法
  电解法:将富集的硫化物矿焙烧成氧化物,用炭还原成粗镍,再经电解得纯金属镍。
   羰基化法:将镍的硫化物矿与一氧化碳作用生成四羰基镍,加热后分解,又得纯度很高的金属镍。
  氢气还原法:用氢气还原氧化镍,可得金属镍。


 

【返回】

相关标签: [tag]

相关新闻

2017-11-27铝型材挤压模具的寿命已成为我国铝型材工业发展的主要瓶颈。铝型材挤压模具的设计与制造成本占总生产成本的20%左右,是铝型材挤压工业变数多、发展快的关键技术之一,涉及了材质、设计、制造、检测、修模、管理等诸多环节,也是发展潜力较大的领域之一。

如何才能更合理地使用这类分流模具,我们可以从以下几方面入手。 

影响模具使用寿命的因素很多,目前没有这样的模型能计算理论寿命.
典型产品的使用寿命一般由专门的科研机构通过负荷试验得出.
不同的铝合金模具设计使用极限次数相差也很大,一般数千次到数十万次不等.这与模具的材料及热处理,铝合金的材料,形状及精度要求等等关系很大,具体可查阅相关行业相关产品的设计规范.
  
(1)、严格执行铝型材生产工艺规章 
  
必须严格按照相应的铝型材挤压工艺执行,开机过程中铝棒炉中段温度设定在530-550℃,出口段温度设定在480-500℃,保温时间要足够,确保铝棒够温且透心(即心部及表面都够温),避免因为铝棒温度表里不一(心部温度不足)而使模具弹性变形增大,从而加剧“偏壁”和“长短不一”的现象发生,甚至使挤压模具发生塑性变形而报废。
    
(2)、确保“三心合一” 
    挤压筒中心、挤压杆中心和模座中心目视必须同心,不允许有明显的偏心现象,否则会影响制品各处的流速,甚至影响制品成型或者使挤压制品左右两支长短相差更大而无法挤压生产。
(3)、合理选用支承垫 
    必须选择大小适当的双孔专用支承垫,以减小下模的弹性变形,使挤压制品成型稳定,尺寸变化小;而且必须在模具出炉前把双孔专用支承垫找好备用,以免模具出炉后因为找支承垫耗时过长而使模具降温过多而出现闷车; 
  
(4)、加强铝型材挤压过程中的信息反馈 
A:挤压模具塞模的信息反馈 
   塞模的原因有很多种,没有经过专门训练的人一般难以表达清楚,最好经过相应的修模人员亲自查看过后并找到原因才可以煲模。 
B:出料成型情况反馈 
   除了要有挤压模具号码标识清楚的料头之外,还要在料头上标识料头难以看出来的整体流向情况,如a、“相交出料”(表示在实际挤压过程中是两孔内侧慢外侧快引起);b、“相离出料”(表示在实际挤压过程中是两孔内侧快外侧慢引起);c、“左长右短”表示左支长右支短,并且要注明长短相差的量,因为中断锯到出料口的距离大约6米,所以通常“A米/6米”的形式表示长短相差的分量为每6米就相差A米,这样完善准确的表达才有利于修模人员的正确判断和维修。 
C:尺寸超差的信息反馈: 
   遇到出料成型正常但是尺寸超差的情况,必须取一段样品做好完整的正确的标识(挤压模具编号、出料方向、尺寸缺陷等等),其中任何一项标识错误都可能会导致修错模具,所以必须高度注意。 
     只有这样完整的使用情况信息反馈,才有利于修模人员的正确判断和维修,才能提高模具维修的效率,才能减少修模次数和不必要的试模。

2016-12-09      高温热锻模是指在高温(超过600度)下使用的锻造模具。这种模具的使用条件十分恶劣,不但要承受超高温而且还要承受高的冲击力。现在一般使用的热锻模材料为5CrNiMo 5CrMnMo,H13,3Cr2W8V等钢种,但是这些钢种在使用时,由于承受高温以及大应力,所以这些材料的在温度超过600度时使用情况都不是很好。

IN718是以Ni为基体,在合金中加入铝,钛以形成金属间化合物进行r’(Ni3AlTi)相沉淀强化。这样就使得该合金具有高温强度高,高温稳定性好,抗氧化性好,热疲劳性能及冲击韧性优异,特别适合制作热锻模,国外已经大批量使用该合金用作高温模具材料。 

在高温的工作环境下5CrNiMo等普通模具 材料的屈服强度和抗拉强度远低于IN718合金,而且随着温度的升高、使用时间的延长屈服强度和抗拉强度急剧降低。IN718合金在高温下,不仅强度远高于5CrNiMo 合金钢,而且随着温度的升高屈服强度和抗拉强度变化不大,并且IN718合金在使用条件下超过1000小时抗拉强度下降小于5%。而5CrNiMo等常规模具钢材料650度高温下累计接触时间不超过8小时就已经因失效而报废。因此,温度愈高,时间愈长,他们之间的差别愈大。  

在600℃ 时IN718的屈服强度是5CrNiMo 的2.4倍,而在650℃ IN718是5CrNiMo 的3.4倍。由于IN718合金具有这种优良的高温强度,锻造时在温度升高到500-800℃时,IN718不变形。 

IN718合金的高温硬度在热锻模的工作温度范围也明显高于5CrNiMo 而且从室温至800℃,硬度保持在同一水平,与此相反5CrNiMo 从400-600℃硬度几乎成直线降低。在500℃时,两种材料硬度相同,到600℃时IN718合金的硬度高于 5CrNiMo一倍以上,良好的高温硬度使IN718合金具有良好的高温耐磨性。
一般的热作模具钢的高温稳定性都不好,从450℃到600℃回火由于组织中碳化物球化,所以钢一直在软化,硬度不断降低,而IN718合金为单一奥氏体钢,不存在相变。在正常热处理后,在600-700℃加热长达1000小时,组织稳定,硬度变化很小。因此5CrNiMo等热作模具钢使用过程中受锻件加热,是一个回火软化过程,材料强度不断降低,而IN718可以保持良好的的强度性能,这一特点对于制作热锻模来说极为有利。 

热锻模在高温下工作,因此材料必须具有良好的抗氧化性能。Cr是主要的抗氧化元素。5CrNiMo钢中仅含有0.7%左右的Cr表面在高温下形成低含量的氧化膜(Fe3Cr)2O3 。这种氧化膜多孔,而且很容易被工件材料所磨掉。IN718合金含有18%的Cr,所以在表面形成致密而且防护性良好的以Cr2O3为主的氧化膜。抗氧化良好。 

综上所述,IN718合金非常适用于600度以上使用的热锻模、冲头、热挤压模、压铸模等材料。它在抚顺钢厂的锻锤衬垫上的使用寿命是5CrNiMo钢使用寿命的15倍以上。

2021-05-12异种金属焊接这些经典常识
  异种金属焊接所存在的一些固有问题阻碍了它的发展,如异种金属熔合区的构成和性能,异种金属焊接结构的破坏多半发生在熔合区,由于靠近熔合区各段上焊缝结晶特点不同,又易形成性能不好的、成分变化的过渡层。
  另外,由于处在高温的时间长,这一区域的扩散层会扩大,会进一步使金属的不均匀性增加。而且异种金属焊接时或焊后经热处理或经高温运行后,经常发现低合金一侧的碳通过焊缝边界向高合金焊缝中“迁移”的现象,分别在熔合线两侧形成脱碳层和增碳层,在低合金一侧母材形成脱碳层,在高合金焊缝一侧形成增碳层。
  防碍和阻止异种金属结构的使用和发展主要表现在以下几个方面:
  1.在室温下,异种金属焊接接头区的机械性能(如拉伸、冲击、弯曲等)一般优于被焊母材的性能,但高温下或高温长期运行后,接头区的性能劣于母材。
  2.在奥氏体焊缝与珠光体母材之间存在一个马氏体过渡区,该区韧性较低,是一个高硬度脆性层,也是导致构件失效破坏的薄弱区,它会降低焊接结构的使用可靠性。
  3.焊后热处理或高温运行过程中碳迁移会导致在熔合线两侧分别形成增碳层和脱碳层。一般认为脱碳层由于碳的减少而导致该区域组织、性能发生较大变化(一般是劣化),从而使得该区域容易在服役过程中发生早期失效。很多服役中的高温管线或者试验中的高温管线的失效部位都集中在脱碳层。
  4.失效与时间,温度和交变应力等条件有关。
  5.焊后热处理不能消除接头区的残余应力分布。
  6.化学成分的不均匀性。
  异种金属焊接的时候,由于焊缝两侧的金属和焊缝的合金成分有着明显的差别,焊接过程中,母材和焊材都会熔化并相互混合,混合的均匀程度随着焊接工艺的改变而改变,而且焊接接头不同的位置,混合均匀程度也有很大差异,这就造成了焊接接头化学成分的不均匀性。
  7.金相组织的不均匀性。
  由于焊接接头化学成分的不连续,经历了焊接热循环后,焊接接头各个区域出现不同的组织,往往在某些区域出现极其复杂的组织结构。
  8.性能的不连续性。
  焊接接头的化学成分和金相组织的差异,带来了焊接接头力学性能的不同。沿焊接接头的各个区域强度、硬度、塑性、韧性、冲击性能、高温蠕变、持久性能都有很大差别。这种显著的不均匀性使得焊接接头不同区域在相同的条件下,表现出来的行为有很大的差异,出现弱化区域和强化区域,尤其是在高温的条件下,异种金属焊接接头在服役过程中经常出现早期失效。
  二
  不同焊接方法焊接异种金属时的特点
  大多数焊接方法都可用于异种金属的焊接,但在选择焊接方法及制定工艺措施时,仍应考虑异种金属焊接时的特点。根据母材和焊接接头不同的要求,熔焊、压焊及其他焊接方法在异种金属焊接中都有所应用,但也都各有其优缺点。
  1.熔焊
  异种金属焊接中应用较多的是熔焊方法,常用的熔焊方法有焊条电弧焊、埋弧焊、气体保护电弧焊、电渣焊、等离子弧焊、电子束焊、激光焊等。为了减少稀释,降低熔合比或控制不同金属母材的熔化量,通常可选用热源能量密度较高的电子束焊、激光焊、等离子弧焊等方法。
  为了减小熔深,可以采取间接电弧、摆动焊丝、带状电极、附加不通电焊丝等工艺措施。但无论如何,只要是熔焊,总有部分母材熔入焊缝而引起稀释,另外,还会形成诸如金属间化合物、共晶体等。为了减轻这类不利影响,必须控制和缩短金属在液态或高温固态下的停留时间。
  然而,尽管熔焊方法和工艺措施不断改进和完善,却仍然难以解决所有异种金属焊接时的问题,因为金属种类繁多,性能要求又多种多样,接头形式又各不相同,许多情况下还需要采用压焊或其他的焊接方法来解决特定的异种金属接头的焊接问题。
  2.压焊
  大多数压焊方法都只将被焊金属加热至塑性状态或甚至不加热,而以施加一定的压力为基本特征。与熔焊相比,在焊接异种金属接头时压焊具有一定的优越性,只要接头形式允许,焊接质量又能满足要求,采用压焊往往是比较合理的选择。
  压焊时,异种金属交界表面可以熔化,也可以不熔化,但由于有压力的作用,即使表面有熔化金属存在,也会被挤压而排出(如闪光焊和摩擦焊),只有少数情况下压焊后还保留了曾经熔化的金属(如点焊)。
  压焊由于不加热或加热温度低,可以减轻或避免热循环对母材金属性能的不利影响,防止产生脆性的金属间化合物。某些形式的压焊甚至能将已产生的金属间化合物从接头中挤压出去。此外,压焊时也不存在因稀释而引起的焊缝金属性能变化问题。
  不过,大多数压焊方法对接头形式是有一定要求的,例如点焊、缝焊、超声波焊必须用搭接接头;摩擦焊时至少有一个工件必须具有旋转体的截面;爆炸焊只适用于较大面积的连接等。压焊设备目前也还不普及。这些无疑地都限制了压焊的应用范围。
  3.其他方法
  除熔焊和压焊外,还有一些可以用于异种金属焊接的方法。例如钎焊就是钎料与母材之间的异种金属焊接方法,不过这里所讨论的则是较特殊的钎焊方法。
  有一种方法称作熔焊——钎焊,即对异种金属接头中低熔点母材一侧为熔焊,对高熔点母材—侧为钎焊。而且通常是以低熔点母材相同的金属为钎料。因此,钎料与低熔点母材之间就是同种金属的熔焊过程,不存在特殊困难。
  钎料与高熔点母材之间则是钎焊过程,母材不发生熔化、结晶,可以避免许多焊接性方面的问题,但要求钎料对母材能良好润湿。
  另一种方法称作共晶钎焊或共晶扩散钎焊。这是将异种金属接触表面加热到一定温度,使两种金属在接触表面处形成低熔点的共晶体,该低熔点共晶体在此温度下呈液态,实质上成了一种不用外加钎料的钎焊方法。
  当然,这要求两种金属之间能够形成低熔点的共晶体。异种金属扩散焊时加入中间层材料,在很低压力下加热使中间层材料熔化,或与被焊金属接触形成低熔点共晶体,此时形成的薄层液体,经一定时间的保温过程,使中间层材料全部扩散到母材中并均匀化,就能形成没有中间材料的异种金属接头。
  这类方法在焊接过程中都会出现少量液态金属。因而又被称作液相过渡焊,他们的共同特点就是接头中不存在铸造组织。
  三
  焊接异种金属的注意事项
  1.考虑焊件的物理、力学性能和化学成分
  (1)根据等强度的观点,选择满足母材力学性能的焊条,或结合母材的可焊性,改用非等强度而焊接性好的焊条,但考虑焊缝的结构形式,以满足等强度、等刚度要求。
  (2)使其合金成分符合或接近母材。
  (3)母材含C、S、P有害杂质较高时,应选择抗裂性能和抗气孔性能较好的焊条。建议选用氧化钛钙型焊条。如果尚不能解决,可选用低氢钠型焊条。
  2.考虑焊件的工作条件和使用性能
  (1)在承受动载荷和冲击载荷的情况下,除保证强度外,对冲击韧性、延伸率均有较高要求,应一次选用低氢型、钛钙型和氧化铁型焊条。
  (2)接触腐蚀介质的,必须根据介质的种类、浓度、工作温度以及区分是一般服饰还是晶间腐蚀等,选用合适的不锈钢焊条。
  (3)在磨损条件下工作时,应区分是一般还是受冲击磨损,是常温还是高温下磨损。
  (4)非常温条件下工作时,应选用相应的保证低温或高温力学性能的焊条。
  3.考虑焊件的集合形状复杂程度,刚度大小,焊接破口的制备情况和焊接位置。
  (1)形状复杂或大厚度的焊件,焊缝金属在冷却时收缩应力大,容易产生裂纹,必须选用抗裂性能强的焊条,如低氢型焊条,高韧性焊条或氧化铁型焊条。
  (2)受条件限制不能翻转的焊件,需选用能全位置焊接的焊条。
  (3)焊接部位难以清理的焊件,选用氧化性强的,对氧化皮和油污不敏感的酸性焊条,以免产生气孔等缺陷。
  4.考虑施焊工地设备
  在没有直流焊机的地方,不宜选用限用直流电源的焊条,而应选用交直流电源的焊条。某些钢材(如珠光体耐热钢)需焊后消除热应力,但受设备条件限制(或本身结构限制)不能进行热处理时。应改用非母材金属材料焊条(如奥氏体不锈钢),可不必焊后热处理。
  5.考虑改善焊接工艺和保护工人的身体健康
  在酸性焊条和碱性焊条都可以满足要求的地方,应尽量采用酸性焊条。
  6.考虑劳动生产率和经济合理性
  在使用性能相同的情况下,应尽量选用价格较低的酸性焊条,而不用碱性焊条,在酸性焊条中又以钛型、钛钙型为贵,根据我国矿藏资源情况,应大力推广钛铁型药皮的焊条。

2018-07-18可能刚听到硬质合金异形产品这一名词时,大家都不大明白这是什么。其实它也是属于硬质合金产品的一种,是由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种合金材料。以下内容中,我们会具体向大家介绍该产品的分类标准。
 
形状
 
如果按形状来进行区分的话,硬质合金异形产品常见的种类有棒状、板状以及球体三种。其中球状体是以高硬度难熔金属的碳化物(WC、TiC)微米级粉末为主要成分,常见的硬质合金有YG、YN、YT、YW系列。相对于这些,棒状体的合金产品则更具有稳定的机械性能,拥有易于焊接等优点。
 
合金分类
 
就合金种类来分,硬质合金异形产品可以分为钨钴类、钨钛钴类以及钨钛钽类三种。钨钴类合金由碳化钨和粘结剂钴构成,主要用于硬质合金刀具、模具以及地矿类产品。钨钛钽类硬质合金则是由碳化钨、碳化钛、碳化钽及钴构成。所以如果是用于制造一些刀具的话,还是选择钛钽类硬质合金比较好,因为它是万能硬质合金。

2018-11-19     高温合金具有优异的耐热和抗腐蚀性能,被誉为“发动机的基石”,航空航天是其最重要的下游应用领域,占总使用量的55%,而在诸如船舰燃气轮机、汽车涡轮增压器以及核电等领域也有重要运用。高温合金作为特钢的代表,在线工艺复杂,具有极高的产业壁垒,不仅对质量可靠性和性能稳定性有着严苛的要求,而且试用论证期往往长达数年,只有具备强大技术储备和研发实力的企业才方可进入。未来随着“中国制造2025”和“两机”专项计划的陆续落实,政策红利即将释放,高温合金发展将迎来重要战略机遇期;预计2020年前,研发资助资金投入规模将不少于2000亿元;
多轮驱动、需求迎来大发展
        我国高温合金行业正处于爆发的前夜,目前年均需求总量约1.5万吨,但政策护航、技术突破的双重刺激未来有望引领高温合金的大发展,预计2020年我国年均需求将达到3.5万吨,需求翻翻,年平均增长率接近20%,市场空间高达122亿元。其中,航空领域用高温合金仍是主力,“产业红利释放+战斗机更新换代+通用航空及无人机市场接力”,利好因素叠加,仅航空领域需求便有望突破1.2万吨;除此之外,核电、燃气轮机、涡轮增压器等领域需求也有望获得持续突破,预计需求将达到2万吨,成为接棒航空航天领域增长的市场新蓝海;

高壁垒、高门槛,供给增长有限
        高温合金整个行业具有较为明显的寡头特征,复杂的在线工艺决定了其成材率低、生产周期长,具有极高的技术壁垒。同时,该行业无论是军品还是民品均涉及到产品认证问题,特别是军品的认证,审核严、跨度长,耗时费力,为该行业构筑了天然的进入壁垒。目前我国高温合金总产能约为1.26万吨,实际产量约8000-9000吨左右,和我国庞大的需求相比,未来存在愈2万吨的产能缺口;
        行业景气向上确立,国产替代趋势加强:
        高温合金需求的演变加剧了未来行业的产能短缺,在过去由于技术上的短板造成我国高温合金成材率低、可靠性差,超过一半的产品依赖外资企业实现供货,造成目前行业实际产能利用率仅为75%左右。所以未来行业要取得突破的关键在于克服固有的技术瓶颈,加大国内厂商在供应序列中的话语权。与此同时,“两机”重大专项也将进一步助力我国高温合金产业的腾飞。技术+政策双管齐下背景下,即使仅按照目前国产化率为40%的中性预测,预计到2020年行业产能利用率也有望达到83%左右,若国产化率进一步提升,未来行业将遇到明显的产能瓶颈。

2023-09-13单晶铸造高温合金是一种独特的铸造高温合金。它的整个铸件由一个晶粒组成,是高温合金定向凝固铸造后提高合金强度和使用温度的一种途径。目前,这种铸造高温合金已广泛应用于航空发动机叶片材料。
    在这种情况下,除了横向强度和塑性外,单晶铸造高温合金的性能没有明显改善。
然而,随着时间的推移和技术的进步,具有晶界强化元素的单晶铸造高温合金应运而生。由于合金初始熔化温度的提高,可以提高固溶处理温度,获得更细、更分散的y′相,充分发挥了合金的潜力。
    后来,单晶铸造高温合金的种类越来越多,其性能特点也越来越显著。不仅可以降低晶界强化元素的含量,而且合金中不含碳化物和硼化物,使初熔温度尽可能提高。此外,在高温均匀化处理的帮助下,初生γ和γ-γ共晶消失,并在适当时效处理后调整复合γ相的晶粒尺寸。金可以保持足够的热腐蚀抗力和良好的加工性能。
      此外,单晶铸造高温合金具有各向异性,不同方向的合金晶体生长状态也不同。利用现有工艺制备单晶铸造高温合金有两种方法,即晶种法和选晶法。用这种方法可以得到许多单晶铸件。

2021-06-08如何增加合金材料的耐腐蚀性能:
(1)提高金属或合金的热力学稳定性,即向原不耐蚀的金属或合金中加入热力学稳定性高的合金元素,使形成固溶体以及提高合金的电极电势,增强耐蚀性。如Cu中加Au,Ni中加入Cu、Cr等,即属此类。不过这种大量加入贵金属的办法,在工业结构材料的应用是有限的。
(2)加入易钝化合金元素,如Cr、Ni、Mo等,可提高基体金属的耐蚀性。钢中加入适量的Cr,即可制得铬系 不锈钢。实验证明,在不锈钢中,含Cr量一般应大于13%时才能起抗蚀作用,Cr含量越高,其耐蚀性越好。这类不锈钢在氧化介质中有很好的抗蚀性,但在非氧化性介质如衡硫酸和盐酸中,耐蚀性较差。这是因为非氧化性酸不易使合金生成氧化膜,同时对氧化膜还有溶解作用。
(3)加入能促使合金表面生成致密的腐蚀产物保护膜的合金元素,是制取耐蚀合金的又一途径。例如,钢能耐大气腐蚀是由于其表面形成结构致密的化合物羟基氧化铁(FeOx·(OH)3-2x)的保护作用。钢中加入Cu与P或P与Cr均可促进这种保护膜的生成,由此可用Cu、P或P、Cr制成耐大气腐蚀的 低合金钢。


2017-01-06机械合金化高温合金(mechanical alloyed superalloy)  
用机械合金化技术制备的粉末冶金高温合金。机械合金化(MA)的功能是藉高能球磨机将组成元素粉末和超细氧化物质点充分均匀化,并将金属粉末加工成为合金粉末。MA的原理是金属粉末在机械力作用下变形、破碎和反复冷焊。MA过程中硬度较高的氧化物和金属粉末不断地被揉入软基体金属中,它不同于一般的混合,基本上不受粉末粒度的限制。由于超细氧化物质点被金属“钉扎”,避免了超细质点因具有很大的剩余原子结合力而容易类聚的倾向,所以MA工艺具有高度均匀的能力。
简史   20世纪60年代氧化物弥散强化高温合金(ODS高温合金)如TD—Ni、TD—Ni—Cr常用共沉淀法制备。这种工艺不能生产含活泼元素钛、铝的高温合金。而铝、钛恰恰是许多高性能的高温合金不可缺少的时效强化元素。1970年MA的发明解决了这一难题。美国国际镍公司生产的机械合金化高温合金MA754、MA956、MA6000是当前*********的高温合金系列之一,其成分见表。MA754、MA956分别是固溶强化型机械合金化镍基、铁基高温合金,在同类型的高温合金中使用温度最高,可用作飞机发动机导向叶片、火焰筒。MA754已用于发动机篦齿环。MA956因具有优良的抗氧化和高温耐蚀性,还可用作换热器、保护套管、热处理高温支架等。MA6000是固溶、时效强化型机械合金化高温合金,因此高温强度最高,可作先进飞机发动机的工作叶片,尚处于试用阶段。90年代以来,美、日、比等国为了开发原子能用快中子增殖堆芯包壳管材料,研制出几种核性能优良的特别是抗中子辐照肿胀的机械合金化铁素体高温合金。该合金在700℃使用温度下蠕变强度为所有铁素体合金之冠,其合金成分为Fe—(13~13.5)Cr0.4Mo—(0.4~2.2)Ti—(0.4~0.5)Y2O3。

2020-03-10塑料模具的制造成本甚高,材料费只占模具成本的极小部分,因此,钢材选用在符合我国资源条件下,应优先选用工艺性好、性能稳定和使用寿命较长的钢种。于模具钢材应用研究,提供模具失效分析及模具寿命解决方案一站式服务,专业销售进口最具性价比模具钢材(硬质合金、瑞典乌德霍姆工具钢UDDEHOLM、日本日立模具钢HITACHI METALS、日本不二越高速钢、美国熔炉斯伯粉末冶金工具钢、德国葛利兹模具钢Groditz等)以及国产新型模具钢、基体钢、无磁模具钢、火焰钢、空冷钢、红冲模具钢等。

硬质合金适用于冷挤压成型的塑料模具用钢多使用工业纯铁。也可使用10、15、20、20Cr钢。为了得到较高的塑性,最好是用硅含量低的钢。对于很深的低模,可以分成若干道工序完成整个压制,在各道压制工序之间,低模应进行完全退火以恢复塑性。工业纯铁锻造应在1000~1250℃或680~850℃范围内进行,避免在中间温度进行,以防“重结晶脆性”。模具在900~930℃渗碳,自780~800℃淬火,并在150~250℃回火,表面硬度58HRC以上。

2018-08-06 硬质合金刀具是现代机械加工中广泛应用的金属切削刀具之一。使用硬质合金刀具切除的铁屑可增加70%,其制造质量主要取决于刃磨质量。因而可以说在硬质合金刀具加工中硬质合金刀具的刃磨占有非常重要的地位。提高硬质合金刀具的刃磨水平,不仅与正确选择刃磨加丁技术有关。而且还与刃磨工艺和刃磨方法以及刃磨夹具等密切相关。工厂里常采用碳化硅砂轮磨削加工技术,因为碳化硅砂轮比刚玉砂轮磨削硬质合金效果好,但是必须适当地选择砂轮的特性参数.才能达到满意的磨削效果。由于在硬质合金刀具加工中经常会出现磨削裂纹从而影响了硬质合金刀具的使用寿命。因此可以说预防和减少硬质合金刀具加工中磨削裂纹的产生,研究在硬质合金刀具磨削过程中磨削裂纹产生的原因和预防措施可以进一步提高被加工零件的加工精度j同时也可以保证硬质合金刀具磨削质量。
 
   磨削裂纹产生的原因
    
    采用碳化硅砂轮磨削硬质合金刀具时。生硬质合金刀具容易产生裂纹或开裂。产生的原冈除了由于硬质合金刀片本身的质量(刀片的显微裂纹和内伤出厂检查时未被发“j),刀具结构不合理,刀片在焊接时形成的内应力,磨削时机床振动大及刀具在工序间转运过程中的碰撞等因素的影响外.在磨削过程中.砂轮和磨削工艺方面的原因,也会造成裂纹。
 
    在硬质合金刀具刃磨过程中.由于制造刀具的硬质合金硬度很高(显微硬度值可达到1碳化硅砂轮(显微硬度值仅为32300~1800N/mm2),000~34000
oC以上.而且温升速度又特别快,引起热变形。再加上硬质合金的抗弯强度很低(750乏200MPa).弹性模量有很大(460000~630000MPa),在室温下几乎没有塑性,不能通过本身的塑性变形消除部分热应力。从而,在磨削热的作用下,促使硬质合金被磨削表面上产生的局部应力值超过了硬质合金的强度极限,从而产生裂纹或开裂。硬质合金裂纹一般为细微的网状裂纹。
 
    在砂轮选择方面,砂轮太硬或粒度太细时。硬质合金也容易开裂,磨削用量选择不合理。硬质合金也容易开裂,砂轮修整不符合要求,工作表面跳动太大,刃磨时振动过猛,硬质合金就容易产生崩刃等缺陷。一般来说,磨削深度太大,硬质合金容易产生裂纹,磨削深度大而进给速度太小时,硬质合金更容易产生裂纹,在硬质合金刃磨中。
 
    对于一个刀齿反复走刀次数多时,由于磨擦产生的热量大,硬质合金也容易产生裂纹,各种不同牌号的硬质合金刀片,其容易开裂的程度也不同。一般来说。YG8、YG5、YT5和YW2等硬质合金较不容易开裂:YTl4、YTl5和YNl0等硬质合金较容易开裂:而YG3、YG3X和YT30等硬质合金特别容易开裂。在同一种牌号的硬质合金刀片中.大而薄的刀片更容易开裂。刃磨时应特别注意。
 
    2预防磨削裂纹采取的措施
    防止硬质合金刀具刃磨开裂的措施:除在检查刀片、刀具结构、焊接工艺、热处理丁艺和机床调整及工序转运过程中需给以足够重视外.还必须使砂轮和磨削工艺适应硬质合金刀具的磨削特性.以减少磨削热的产生。例如:1)提高砂轮的自锐能力,使钝化的磨粒及时脱落,砂轮的磨削性能能得到改善,以减少磨削热。2)改善磨削区域的散热条件,分散磨削热,可采用N/mm2)磨粒极容易钝化,如果砂轮的自锐能力不好,被磨钝的磨粒不能及时地脱落下来。砂轮失去了应有的切削能力。磨削条件就会变得恶劣。砂轮与硬质合金刀具被磨削表面之间的摩擦加剧,磨削产生的热量剧增。


相关产品

Copyright www.alloy-east.com (复制链接) 丹阳市东方合金有限公司 GH5605,GH3128,GH3044 ,欢迎来电咨询.
企业圈子: