网站地图 | RSS订阅 欢迎光临 丹阳市东方合金有限公司官网

咨询热线:0511-86688876

热门关键词: GH5605,GH3128,GH3044

新闻中心

当前位置:首页 > 新闻信息 > 公司新闻 > GH3128厂家为你介绍高温合金的高温塑性

[newsnname]

来源 : www.alloy-east.com   发布时间 : 2016-12-27

     变形高温合金属于复杂合金化材料,这些材料的合金化程度决定着材料的热强性和可锻性。由于合金的设计要求高温合金具有抗高温变形的能力,所以这类合金锻造变形困难、塑性低、变形抗力大是理所当然的。较高的脱溶合金元素含量(40%~50%),使合金具有多相组织,并且再结晶温度高,在高温下加工硬化严重,从而降低了工艺塑性,增大了变形抗力。硫、铅、锡等杂质使合金间结合力及晶界强度严重下降,对合金的高温塑性有特别明显的影响。含钛和铝的铁基合金可能造成氮化物和碳化物偏析,它们可在锻棒中形成条状夹杂,从而影响合金的可锻性。镍基合金中的氮化物和氧化物也起着破坏合金可锻性的作用。通过真空熔炼可以有效减少合金中的氧、氮及其他杂质的含量,消除或减轻合金中的偏析,显著提高合金的可锻性。 图2是合金结构钢、铁基合金GH2036和镍基合金GH4037的塑性曲线。表7为铁基和镍基高温合金在不同设备上锻造时的允许变形程度。由图2和表7可以看出,铁基高温合金的工艺塑性比镍基高温合金的工艺塑性高。在高温下冲击变形时,设备每次行程的允许变形量,对铁基合金为60%~65%,对镍基合金为40%~50%。而合金结构钢产生80%以上变形仍不出现脆性。在高速锤上进行模锻时,铁基合金的塑性(允许变形程度)有所增加,而镍基合金的塑性则停留在原来的水平上,其原因是坯料在变形过程中因热效应而温升。为了提高合金的高温塑性和锻件质量,建议用热挤锻法或带反力的闭式模模锻高温合金。


 

【返回】

相关标签: [tag]

相关新闻

2020-12-101、元件的最高使用温度是指元件本身在干燥空气中的表面温度,而不是炉子或被加热物体的温度。一般来说,表面温度比炉温高100度左右。因此,考虑到上述原因,应注意元件的使用温度。当使用温度超过一定限度时,元件本身的氧化能力会加快,耐热性降低,特别是Fe-Cr-al电热合金构件容易变形、塌陷、甚至断裂,缩短使用寿命。
2、元件的最高使用温度也与元件的线径有关。一般情况下,元件的最高使用温度不应低于3mm,扁钢的厚度不应小于2mm。
3、炉内腐蚀性气氛还与构件的最高使用温度有关,腐蚀性气氛的存在往往会影响构件的使用温度和使用寿命。
4、由于Fe-Cr-Al和Ni-Cr合金的化学成分、使用温度、抗氧化性和电阻率的不同,确定了它们的使用温度和使用寿命。Al元素决定了Fe-Cr-Al合金的电阻率,Ni元素决定了Ni-Cr-Al合金的电阻率。高温下,合金构件表面形成的氧化膜也会发生老化和破坏。其组件的内部元素不断被消耗。如铝、镍等,缩短使用寿命。因此,在选择线材直径时,应选用大规格线材或较厚的扁平带。
5、由于Fe-Cr-Al合金高温强度较低,在高温下易发生变形。如果导线直径选择不当或安装不当,元件会因高温变形而倒塌和短路。因此,在构件设计中必须考虑这些因素。
6、由于Fe-Cr-Al、Ni-Cr等系列电热合金的化学成分不同,其使用温度和抗氧化性由电阻率的差异决定。Al元素决定了Fe-Cr-Al合金材料的电阻率,Ni元素决定了Ni-Cr-Al合金材料的电阻率。高温下,合金元素表面形成的氧化膜决定了其使用寿命。由于长期使用,元件内部结构不断变化,表面氧化膜也在老化破坏。其组件的内部元素不断被消耗。如铝、镍等,缩短使用寿命。因此,在选择线材直径时,应选择规格的线材或较厚的扁钢带。

     

2019-06-05   高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。

   高温合金又称超合金,使用温度范围为550~1100°C。英国于40年代最早研制成镍基合金尼蒙尼克75,用作燃气涡轮发动机的涡轮叶片材料。1945~1975年,高温合金有了很大发展,涡轮进口温度平均每年提高15°C(涡轮前温度每提高100°C,能使发动机推力增加15%)。随着合金化程度的提高,高温合金的锻压变形愈加困难,因此铸造合金逐渐得到发展和应用。镍基铸造合金的高温强度高,组织比较稳定,热疲劳性能好,是制造涡轮工作叶片和导向叶片的理想材料。从60年代初发展定向凝固铸造涡轮叶片以来,由于消除了垂直于应力方向的横向晶界,叶片的热疲劳寿命提高大约8倍,蠕变断裂寿命提高2倍多,塑性提高4倍。 定向凝固单晶涡轮叶片则完全消除了晶界,与普通铸造涡轮叶片相比,工作温度提高近100°C。

   以难熔金属钨、钼、钽、铌为基体,添加固溶强化元素形成以碳化物沉淀相和热加工方式强化的高温材料。它的熔点和高温强度大大超过高温合金和弥散强化合金,钨-钼和铌-钨-钽合金在1316°C时的拉伸强度分别达到 510和 210兆帕(约51和21公斤/毫米2)。钼合金在1093°C时的拉伸强度也能达到 490兆帕(约49公斤/毫米2),都是制造航空燃气涡轮发动机涡轮叶片、导向叶片和燃烧室的优良材料。缺点是受高温空气侵蚀时极易脆化,须在涂层的保护下使用。铌合金已被用于制造短时间工作的火箭发动机燃烧室和喷管,也有用钽制造这类高温部件的。用钨合金丝或钨纤维增强高温合金制成高温复合材料,可以弥补难熔合金的缺点,用作先进燃气涡轮发动机的涡轮叶片。

2018-03-31硬质合金焊接刀片
硬质合金焊接刀片,是比较常见的切削机床上金属切削用刀具刀片,一般都是用在车刀、铣刀上面的刀片。
硬质合金焊接刀片的九个使用要点 :
1、焊接式切削刀具结构应具有足够的刚性足够的刚性是以******允许的外形尺寸,以及采用较高强度的钢号和热处理来保证.
2、硬质合金刀片应固定牢靠硬质合金焊接刀片应有足够的固定牢靠程度,它是靠刀槽及焊接质量来保证的,故要根据刀片形状及刀具几何参数选择刀片镶槽形状.
3、认真检查刀杆在将刀片焊接至刀杆上以前须要对刀片,刀杆进行必要的检查,首先应检查刀片支承面不能有严重弯曲.硬质合金焊接面不得有严重渗碳层,同时还应将硬质合金刀片表面及刀杆镶槽中的污垢进行清除,以保证焊接牢靠.
4、合理选用焊料为了保证焊接强度,应选择合适的焊料.在焊接过程中,应保证良好的湿润性和流动性,并排除气泡,使焊接与合金焊接面充分接触,无缺焊现象.
5、正确选择焊接用熔剂建议采用工业硼砂,在使用前应在烘干炉中进行脱水处理,然后进行碾碎,过筛去除机械杂物,待用.
6、选用网状补偿垫片在焊接高钛低钴细颗粒合金及焊接长而薄的合金刀片时,为减少焊接应力,建议采用厚度为0.2--0.5mm的薄片或网孔径2--3mm的网状补偿垫片进行焊接.
7、正确采用刃磨方法由于硬质合金刀片脆性较大,对裂纹形成敏感性强,所以刀具在刃磨过程中应避免过热或急冷,同时还要选择合适粒度的砂轮及合理的磨削工艺,避免产生刃磨裂纹,影响刀具使用寿命.
8、正确安装刀具在安装刀具时,刀头伸出刀架的长度应尽量小,否则,容易引起刀具震动,从而损坏合金片.
9、正确重磨、研磨刀具刀具使用达到正常磨钝时,必须进行重磨,重磨后的刀具,一定要用油石对刃口及刀尖圆角进行研磨,这样会提高   刀具的使用寿命及安全可靠性.

2017-01-06耐腐蚀材料粉末高温合金:粉末高温合金是采用粉末冶金工艺制取的高温合金,通常,粉末高温合金按强化方式分为沉淀强化型高温合金和氧化物弥散强化型高温合金。
(l)沉淀强化粉末高温合金
除含碳量适当减少之外,这些合金的成分与同牌号的铸造或变形合金相同。例如in100、rene,95、rene,88dt等已投入使用。
(2)氧化物弥散强化高温合金
以热稳定性高的超细氧化物质点弥散分布于合金基体内的粉末高温合金,简称ods (oxide dispersion strengthening)高温合金。该类合金的氧化物弥散质点目前都采用y2o3,合金中y2o3的含量一般为0.5%~2.0%之间,过高的y2o3含量虽然能提高合金强度,但塑性显著降低。例如,ma753、ma6000等,也已投入使用。

2019-01-31    合金是由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种合金材料。硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,即使在500℃的温度下也基本保持不变,在1000℃时仍有很高的硬度。下面由硬质合金厂家河北省南宫市精诚合金工具有限公司为您介绍硬质合金的生产流程:
硬质合金烧结过程可以分为四个基本阶段:
1、脱除成形剂及预烧阶段,在这个阶段烧结体发生如下变化:
成型剂的脱除,烧结初期随着温度的升高,成型剂逐渐分解或汽化,排除出烧结体,与此同时,成型剂或多或少给烧结体增碳,增碳量将随成型剂的种类、数量以及烧结工艺的不同而改变。
粉末表面氧化物被还原,在烧结温度下,氢可以还原钴和钨的氧化物,若在真空脱除成型剂和烧结时,碳氧反应还不强烈。粉末颗粒间的接触应力逐渐消除,粘结金属粉末开始产生回复和再结晶,表面扩散开始发生,压块强度有所提高。
2、固相烧结阶段(800℃--共晶温度)
在出现液相以前的温度下,除了继续进行上一阶段所发生的过程外,固相反应和扩散加剧,塑性流动增强,烧结体出现明显的收缩。
3、液相烧结阶段(共晶温度--烧结温度)
当烧结体出现液相以后,收缩很快完成,接着产生结晶转变,形成合金的基本组织和结构。
4、冷却阶段(烧结温度--室温)
在这一阶段,合金的组织和相成分随冷却条件的不同而产生某些变化,可以利用这一特点,对硬质合金进行热处理以提高其物理机械性能。
在金属切削加工时,导胀、热率这一性能具有特别重要的意义。大家知道,金属切削加工中产生的热量,主要传导于刀具、切屑和被加工的零件上。热量的传导过程,在颇大程度上取决于刀具的导热率。当刀具的导热率很高时,绝大部分的热量传给刀具,极小部分传给切屑与被加工零件。当刀具的导热率低时,则与此相反,热量即大部分集中于切屑上,这对于切屑加工是有利的。因为切屑受到强热就会软化。 钨钴合金的导热率为0.14-0.15卡/厘米.度.秒,比高速钢高1-2倍;而钨钛钴合金的导热率仅为0.04-0.15卡/厘米.度.秒,高钛合金如YT30、YT60的导热率比高速钢低。8.线胀系数 钨钴合金的线胀系数较小,低于高速钢、碳素钢和铜的线胀系数,并且随含钴量增加而增加;钨钛钴合金的线胀系数比钨钴合金高,且随碳化钛含量增加而略增,但其线胀系数比高速钢仍小的多。 在镶焊硬质合金工具时,由于硬质合金和刚体线胀系数的差异,经镶焊的工具冷却时,内外所受应力不同,在表面形成内向拉应力。在镶焊后,应采取措施消除这种内应力。否则,硬质合金片会产生裂纹或脱焊现象,从而造成硬质合金工具的报废。

2020-11-09    单晶铸造高温合金是一种独特的铸造高温合金。它的整个铸件由一个晶粒组成,是高温合金定向凝固铸造后提高合金强度和使用温度的一种途径。目前,这种铸造高温合金已广泛应用于航空发动机叶片材料。
    在这种情况下,除了横向强度和塑性外,单晶铸造高温合金的性能没有明显改善。
然而,随着时间的推移和技术的进步,具有晶界强化元素的单晶铸造高温合金应运而生。由于合金初始熔化温度的提高,可以提高固溶处理温度,获得更细、更分散的y′相,充分发挥了合金的潜力。
    后来,单晶铸造高温合金的种类越来越多,其性能特点也越来越显著。不仅可以降低晶界强化元素的含量,而且合金中不含碳化物和硼化物,使初熔温度尽可能提高。此外,在高温均匀化处理的帮助下,初生γ和γ-γ共晶消失,并在适当时效处理后调整复合γ相的晶粒尺寸。金可以保持足够的热腐蚀抗力和良好的加工性能。
      此外,单晶铸造高温合金具有各向异性,不同方向的合金晶体生长状态也不同。利用现有工艺制备单晶铸造高温合金有两种方法,即晶种法和选晶法。用这种方法可以得到许多单晶铸件。

2019-07-20组织
镍基合金的显微组织特点及其发展情况见图3,合金中除奥氏体基体外,还有在基体中弭散分布的g'相,在晶界上的二次碳化物和在凝固时析出的一次碳化物和硼化物等。随着合金化程度的提高,其显微组织的变化有如下趋势:g'相数量逐渐增多,尺寸逐渐增大,并由球状变成立方体,同一合金中出现尺寸和形态不相同的g'相。在铸造合金中还出现在凝固过程中形成的g+g'共晶,晶界析出不连续的颗粒状碳化物并被g'相薄膜所包围,组织的这些变化了合金的性能。
现代镍基合金的化学成分十分复杂,合金的饱和度很高,因此要求对每个合金元素(尤其是主要强化元素)的含量严加控制,否则会在使用过程中容易析出有害相,如s、µ相(图4),损害合金的强度和韧性。
在镍基铸造高温合金中发展出了定向结晶涡轮叶片和单晶涡轮叶片(图5)。定向结晶叶片消除了对空洞和裂纹敏感的横向晶界,使全部晶界平行于应力轴方向,从而了合金的使用性能。单晶叶片消除了全部晶界,不必加入晶界强化元素,使合金的初熔温度相对升高,从而提高了合金的高温强度,并进一步了合金的综合性能。
生产工艺
镍基合金,特别是沉淀强化型合金含有较高的铝、钛等合金元素。通常采用真空感应炉熔炼,并经真空自耗炉或电渣炉重熔。热加工采用锻造、轧制工艺,对于高合金化合金,由于热塑性差,则采用挤压开坯后轧制或用软钢(或不锈钢)包套直接挤压工艺。铸造合金通常用真空感应炉熔炼母合金,并用真空重熔-精密铸造法制成零件。
变形合金和部分铸造合金需进行热处理,包括固溶处理、中间处理和时效处理,以Udmet 500合金为例,它的热处理制度分为四段:固溶处理,1175℃,2小时,空冷;中间处理,1080℃,4小时,空冷;一次时效处理,843℃,24小时,空冷;二次时效处理,760℃,16小时,空冷。以获得所要求的组织状态和良好的综合性能。

2022-08-15硬质合金带材是硬质合金的一种形状。由于其形状较长,因此被称为“硬质合金带材”。又称“硬质合金方棒”、“钨钢带”和“钨钢带”。硬质合金带材主要用于制造各种硬质合金工具,如硬质合金木工工具和硬质合金刀片。由于其高硬度和良好的耐磨性,它们也通常用于制造精密机械和仪器上的高耐磨零件。硬质合金带材因其硬度高、抗弯强度好、耐酸碱等优点在国民生产中得到广泛应用,为国民生产和建设做出了巨大贡献。
硬质合金带材根据其不同的性能和用途有不同的等级。最常用的是YG系列硬质合金带,如YG8钨钢带、YG3X硬质合金带、YG6X钨钢带和yl10.2硬质合金带;此外,还有YT系列硬质合金带,如YT5硬质合金带和YT14硬质合金带;还有yd201硬质合金方棒、yw1硬质合金方条、ys2t硬质合金方钢等。不同牌号的硬质合金方圆棒的物理力学性能不一致,应根据使用条件、使用环境、使用目的和要求仔细选择。
以下是如何购买硬质合金带材:
1.购买硬质合金方棒时,了解合金牌号,即硬质合金方棒的物理性能参数非常重要!
2.当你购买硬质合金方棒时,你应该检查它们的外部尺寸。具有精确外形尺寸的硬质合金方棒可以缩短您的深加工时间,从而提高您的生产效率,降低加工成本。
3.购买硬质合金方棒时,必须注意检查平面的平面度、对称性和其他形状和位置公差。具有高形位公差精度的硬质合金方棒可以生产更高质量的产品,并且加工更简单。
4.购买硬质合金方棒时,注意检查边缘是否有崩边、缺角、圆角、橡胶、起泡、变形、翘曲、过烧等不良现象。优质硬质合金方棒不会出现上述不利现象。

2018-11-09     变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。
变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。

    1、时效强化型合金 
  使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。
  2、固溶强化型合金 
  使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。

2020-03-10塑料模具的制造成本甚高,材料费只占模具成本的极小部分,因此,钢材选用在符合我国资源条件下,应优先选用工艺性好、性能稳定和使用寿命较长的钢种。于模具钢材应用研究,提供模具失效分析及模具寿命解决方案一站式服务,专业销售进口最具性价比模具钢材(硬质合金、瑞典乌德霍姆工具钢UDDEHOLM、日本日立模具钢HITACHI METALS、日本不二越高速钢、美国熔炉斯伯粉末冶金工具钢、德国葛利兹模具钢Groditz等)以及国产新型模具钢、基体钢、无磁模具钢、火焰钢、空冷钢、红冲模具钢等。

硬质合金适用于冷挤压成型的塑料模具用钢多使用工业纯铁。也可使用10、15、20、20Cr钢。为了得到较高的塑性,最好是用硅含量低的钢。对于很深的低模,可以分成若干道工序完成整个压制,在各道压制工序之间,低模应进行完全退火以恢复塑性。工业纯铁锻造应在1000~1250℃或680~850℃范围内进行,避免在中间温度进行,以防“重结晶脆性”。模具在900~930℃渗碳,自780~800℃淬火,并在150~250℃回火,表面硬度58HRC以上。

相关产品

Copyright www.alloy-east.com (复制链接) 丹阳市东方合金有限公司 GH5605,GH3128,GH3044 ,欢迎来电咨询.
企业圈子: